
What is self-supervised learning? - IBM
Jan 5, 2021 · Self-supervised learning is a machine learning technique that uses unsupervised learning for tasks typical to supervised learning, without labeled data.
自己教師あり学習とは| IBM
自己教師あり学習(SSL)は、 コンピューター・ビジョン や 自然言語処理(NLP) のように、最先端の 人工知能(AI)モデル をトレーニングするために、大量のラベル付きデータを必要とする分野 …
什么是自监督学习?| IBM
这种与传统机器学习范式的不完美契合导致了现在统称为“自监督学习”的各种技术有了自己的分类。 该术语的创造者通常被认为是 Yann LeCun,他是图灵奖得主计算机科学家,也是深度学习出现的关键人 …
What is supervised learning? - IBM
Supervised learning is a machine learning technique that uses labeled data sets to train artificial intelligence algorithms models to identify the underlying patterns and relationships between input …
Qu’est-ce que l’apprentissage auto-supervisé ? | IBM
L'apprentissage auto-supervisé est une technique de machine learning qui utilise l'apprentissage non supervisé pour des tâches qui, habituellement, nécessitent un apprentissage supervisé, le tout sans …
What is AI agent learning? - IBM
Rather than relying on labeled datasets for supervisory signals, self-supervised AI models generate implicit labels from unstructured data. Self-supervised learning is useful in fields such as computer …
Supervised versus unsupervised learning: What's the difference?
In this article, we’ll explore the basics of two data science approaches: supervised and unsupervised. Find out which approach is right for your situation. The world is getting “smarter” every day, and to …
자기 지도 학습이란 무엇인가요? | IBM
자기 지도 학습 (SSL)은 컴퓨팅 비전 및 자연어 처리 (NLP) 와 같이 최첨단 인공 지능 (AI) 모델 을 학습하기 위해 대량의 레이블이 지정된 데이터가 필요한 분야에서 특히 유용합니다. 이러한 레이블이 지정된 …
Was ist selbstüberwachtes Lernen? - IBM
Selbstüberwachtes Lernen ist eine Technik des maschinellen Lernens, bei der unüberwachtes Lernen für Aufgaben verwendet wird, die typisch für überwachtes Lernen sind, ohne dass gelabelte Daten …
Types of Machine Learning | IBM
Machine learning types Machine learning algorithms fall into five broad categories: supervised learning, unsupervised learning, semi-supervised learning, self-supervised and reinforcement learning.